Chaos Analysis for Ekg Time Series Data
نویسندگان
چکیده
Our project aims at testing various measures of chaos in time series data from an electrocardiogram (EKG). We examine data from three types of patients who we assume to produce varying EKG dynamics. We use time-delay embedding and calculate correlation dimensions to determine if the data is chaotic or random. Our results indicate that there is some evidence of deterministic chaotic behavior in the RR-Interval time series for an athletic patient and an atrial fibrillation patient. The correlation dimension for both types indicated chaotic behavior in five and six dimensions over a specific range of r.
منابع مشابه
Chaotic Analysis and Prediction of River Flows
Analyses and investigations on river flow behavior are major issues in design, operation and studies related to water engineering. Thus, recently the application of chaos theory and new techniques, such as chaos theory, has been considered in hydrology and water resources due to relevant innovations and ability. This paper compares the performance of chaos theory with Anfis model and discusses ...
متن کاملInvestigating Chaos in Tehran Stock Exchange Index
Modeling and analysis of future prices has been hot topic for economic analysts in recent years. Traditionally, the complex movements in the prices are usually taken as random or stochastic process. However, they may be produced by a deterministic nonlinear process. Accuracy and efficiency of economic models in the short period forecasting is strategic and crucial for business world. Nonlinear ...
متن کاملRiver Discharge Time Series Prediction by Chaos Theory
The application of chaos theory in hydrology has been gaining considerable interest in recent years.Based on the chaos theory, the random seemingly series can be attributed to deterministic rules. Thedynamic structures of the seemingly complex processes, such as river flow variations, might be betterunderstood using nonlinear deterministic chaotic models than the stochastic ones. In this paper,...
متن کاملA Novel Method for Detection of Epilepsy in Short and Noisy EEG Signals Using Ordinal Pattern Analysis
Introduction: In this paper, a novel complexity measure is proposed to detect dynamical changes in nonlinear systems using ordinal pattern analysis of time series data taken from the system. Epilepsy is considered as a dynamical change in nonlinear and complex brain system. The ability of the proposed measure for characterizing the normal and epileptic EEG signals when the signal is short or is...
متن کاملNeural Networks for Chaotic Time Series Prediction
There are many systems that can be described as chaotic: The readings from seismic monitoring stations in mines which describe the rock dynamics, from EKG which describe the fibrillation of a cardiac patient’s heart, and the share prices in financial markets which describe the optimism about the earning potential of companies are examples of observations of deterministic, non−linear, dynamical ...
متن کامل